Bitwise Operators
Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ^ are as follows:
p | q | p & q | p | q | p ^ q |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 1 |
Assume if A = 60; and B = 13; then in the binary format they are as follows:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
The Bitwise operators supported by C# are listed in the following table. Assume variable A holds 60 and variable B holds 13, then:
Operator | Description | Example |
---|---|---|
& | Binary AND Operator copies a bit to the result if it exists in both operands. | (A & B) = 12, which is 0000 1100 |
| | Binary OR Operator copies a bit if it exists in either operand. | (A | B) = 61, which is 0011 1101 |
^ | Binary XOR Operator copies the bit if it is set in one operand but not both. | (A ^ B) = 49, which is 0011 0001 |
~ | Binary Ones Complement Operator is unary and has the effect of 'flipping' bits. | (~A ) = 61, which is 1100 0011 in 2's complement due to a signed binary number. |
<< | Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand. | A << 2 = 240, which is 1111 0000 |
>> | Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand. | A >> 2 = 15, which is 0000 1111 |
Example
The following example demonstrates all the bitwise operators available in C#:
using System;
namespace OperatorsAppl
{
class Program
{
static void Main(string[] args)
{
int a = 60; /* 60 = 0011 1100 */
int b = 13; /* 13 = 0000 1101 */
int c = 0;
c = a & b; /* 12 = 0000 1100 */
Console.WriteLine("Line 1 - Value of c is {0}", c );
c = a | b; /* 61 = 0011 1101 */
Console.WriteLine("Line 2 - Value of c is {0}", c);
c = a ^ b; /* 49 = 0011 0001 */
Console.WriteLine("Line 3 - Value of c is {0}", c);
c = ~a; /*-61 = 1100 0011 */
Console.WriteLine("Line 4 - Value of c is {0}", c);
c = a << 2; /* 240 = 1111 0000 */
Console.WriteLine("Line 5 - Value of c is {0}", c);
c = a >> 2; /* 15 = 0000 1111 */
Console.WriteLine("Line 6 - Value of c is {0}", c);
Console.ReadLine();
}
}
}
When the above code is compiled and executed, it produces the following result:
using System;
namespace OperatorsAppl
{
class Program
{
static void Main(string[] args)
{
int a = 60; /* 60 = 0011 1100 */
int b = 13; /* 13 = 0000 1101 */
int c = 0;
c = a & b; /* 12 = 0000 1100 */
Console.WriteLine("Line 1 - Value of c is {0}", c );
c = a | b; /* 61 = 0011 1101 */
Console.WriteLine("Line 2 - Value of c is {0}", c);
c = a ^ b; /* 49 = 0011 0001 */
Console.WriteLine("Line 3 - Value of c is {0}", c);
c = ~a; /*-61 = 1100 0011 */
Console.WriteLine("Line 4 - Value of c is {0}", c);
c = a << 2; /* 240 = 1111 0000 */
Console.WriteLine("Line 5 - Value of c is {0}", c);
c = a >> 2; /* 15 = 0000 1111 */
Console.WriteLine("Line 6 - Value of c is {0}", c);
Console.ReadLine();
}
}
}
When the above code is compiled and executed, it produces the following result:
Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15
No comments:
Post a Comment